Description
There are some notes just need to add to the same file that we worked on it before. The notes are about formatting and adding or editing some figure. I am list those notes to make it easy to do and follow Table of contents need be formatted to look good ( showing title and subtitle)Move section 2.7 ( research questions) to end of chapter 1. Make sure of number is changeMove section 3.6 Research gap to chapter 2 . Make sure of number is changeList of figures should include page number of each figure List of tables should include page number of each table Delete table of figures which include table and figures Header of each page should be on the right side Add table to 2.4 and number itAdd three figures to 2.5 and number it Could add figure to 2.6 and number it Add figure to 3.2.1 and number it Add figure to 3.2.2 and number itAdd figure to 3.2.3 and number it Add figure to 3.2.4 and number it Add figure to 3.3 and number it Delete 3.7 research designDelete research objectives on page 27Make sure the space between line is 1.5 Make sure the size of title is 16 and subtitle is 14 and text is 12 use the same file that i have attached, so just add to it
Unformatted Attachment Preview
JUST KEEP IT EMPTY
I will add cover page later
In Partial Fulfilment of the Requirements
For the Degree of
Master’s Degree in Cybersecurity
© November 27, 2023
All rights reserved
i
COMMITTEE OF EXAMINATION PAGE
The thesis of [Student Name] is approved by the examination committee.
Committee Chairperson: [insert name]
Committee Co‐Chair (if appropriate): [insert name]
Committee Members: First Name, Second Name, Third Name [External]
Abstract
The Zone Routing Protocol (ZRP) is a hybrid routing protocol designed to improve the
efficiency and scalability of mobile ad hoc networks (MANETs). This protocol combines the
advantages of proactive and reactive routing strategies, aiming to provide a balance between low
latency and reduced overhead. ZRP divides the network into zones, where each node maintains
information about its local topology and a global view of the entire network. This division allows
for a proactive approach within the node’s zone while utilizing reactive strategies for inter-zone
communication.
The key components of ZRP include the Intrazone Routing Protocol (IARP) and the
Interzone Routing Protocol (IERP). IARP is responsible for maintaining the routing table within the
local zone, employing proactive routing updates to ensure quick responses to changes in the local
topology. On the other hand, IERP is reactive and focuses on discovering routes between different
zones when needed, optimizing the overall routing efficiency. ZRP addresses the dynamic nature of
MANETs by dynamically adjusting the size of routing zones based on network conditions. This
adaptability enhances the scalability and performance of ZRP in various scenarios, making it
suitable for both small and large-scale ad hoc networks.
The protocol also incorporates a robust route maintenance mechanism to handle link failures
and topology changes effectively. This abstract explores the architecture, functionality, and
performance aspects of ZRP, highlighting its strengths and potential challenges. It also discusses
the impact of ZRP on network reliability, latency, and scalability.
Additionally, the abstract touches upon practical implementations and simulations that
demonstrate the protocol’s effectiveness in real-world scenarios. The Zone Routing Protocol
presents a promising solution for addressing the unique challenges posed by mobile ad hoc
networks. Its hybrid nature, combining proactive and reactive elements, offers a versatile approach
to routing that can adapt to the dynamic nature of these networks. Further research and
experimentation are necessary to fully explore the protocol’s capabilities and potential
enhancements in various network scenarios.
Keywords: ad-hoc networks, routing, ZRP, Zone Route, delay, Message exchange
Arabic Version
بروتوكول توجيه المنطقة هو بروتوكول توجيه مختلط مصمم لتحسين كفاءة وقابلية التوسع لشبكات الجوال المخصصة.
يجمع هذا البروتوكول بين مزايا إستراتيجيات التوجيه االستباقية والتفاعلية ،بهدف توفير التوازن بين زمن الوصول المنخفض
وتقليل النفقات العامة .يقسم بروتوكول توجيه المنطقة الشبكة الى مناطق ،حيث تحتفظ كل عقدة بمعلومات حول هيكلها المحلي
وعرض عالمي للشبكة بأكملها .يسمح هذا التقسيم باتباع نهج استباقي داخل منطقة العقدة مع استخدام اإلستراتيجيات التفاعلية
لالتصال بين المناطق.
تتضمن المكونات الرئيسية لبروتوكول توجيه المنطقة بروتوكول التوجيه الداخلي وبروتوكول التوجيه الداخلي .يعد
بروتوكول التوجيه الداخلي مسؤوالً عن الحفاظ على جدول التوجيه داخل المنطقة المحلية ،وذلك باستخدام تحديثات التوجيه
االستباقية لضمان االستجابات السريعة للتغيرات في الهيكل المحلي .من ناحية أخرى ،يعد بروتوكول التوجيه بين المناطق تفاعليًا
ويركز على اكتشاف المسارات بين المناطق المختلفة عند الحاجة ،مما يؤدي إلى تحسين كفاءة التوجيه اإلجمالية.
يعال ج بروتوكول توجيه المنطقة الطبيعة الديناميكية للشبكات المتنقلة المخصصة من خالل ضبط حجم مناطق التوجيه
ديناميكيًا بنا ًء على ظروف الشبكة .تعمل هذه القدرة على التكيف على تحسين قابلية التوسع واألداء لبروتوكول توجيه المنطقة في
سيناريوهات مختلفة ،مما يجعلها مناسبة لكل من الشبكات المخصصة الصغيرة والكبيرة الحجم .يشتمل البروتوكول أيضًا على
آلية قوية لصيانة المسار للتعامل مع حاالت فشل االرتباط وتغييرات الهيكل بشكل فعال.
يستكشف هذا الملخص جوانب البنية والوظيفة واألداء لبروتوكول توجيه المنطقة ،مع تسليط الضوء على نقاط القوة
والتحديات المحتملة .ويناقش أيضًا تأثير بروتوكول توجيه المنطقة على موثوقية الشبكة وزمن الوصول وقابلية التوسع .باإلضافة
إلى ذلك ،يتطرق الملخص إلى التطبيقات العملية وعمليات المحاكاة التي تثبت فعالية البروتوكول في سيناريوهات العالم الحقيقي.
يقدم بروتوكول توجيه المنطقة حالً واعدا ً لمعالجة التحديات الفريدة التي تطرحها شبكات الهاتف المحمول المخصصة .توفر
طبيعتها الهجينة ،التي تجمع بين العناصر االستباقية والتفاعلية ،أسلوبًا متعدد االستخدامات للتوجيه يمكن أن يتكيف مع الطبيعة
الديناميكية لهذه الشبكات .من الضروري إجراء المزيد من البحث والتجريب الستكشاف قدرات البروتوكول والتحسينات المحتملة
بشكل كامل في سيناريوهات الشبكة المختلفة.
الكلمات المفتاحية :الشبكات المخصصة ،التوجيه ،برتوكول المناطق ،التأخير ،تبادل الرسائل
ACKNOWLEDGMENT
Table of Contents
COMMITTEE OF EXAMINATION PAGE……………………………………………………………………………………….. ii
Abstract ……………………………………………………………………………………………………………………………………………….iii
Arabic Version …………………………………………………………………………………………………………………………………….. v
ACKNOWLEDGMENT ………………………………………………………………………………………………………………………… vi
LIST OF ABBREVIATIONS ……………………………………………………………………………………………………………. xii
LIST OF FIGURES ………………………………………………………………………………………………………………………… xiii
LIST TABLES ………………………………………………………………………………………………………………………………….. xiv
CHAPTER 1: INTRODUCTION OF HYBRID ROUTING WITH ZONE ROUTING PROTOCOL … 1
1.1
Introduction …………………………………………………………………………………………………………………………………………. 1
1.2
Problem Statement………………………………………………………………………………………………………………………………. 2
1.3
Research Objectives…………………………………………………………………………………………………………………………….. 3
1.4
Importance of the Research ………………………………………………………………………………………………………………… 3
1.5
Research Hypothesis / Assumptions / Limitations …………………………………………………………………………….. 3
1.6
Theoretical Framework ………………………………………………………………………………………………………………………. 4
CHAPTER 2: LITERATURE REVIEW …………………………………………………………………………………………….. 5
2.1 Introduction……………………………………………………………………………………………………………………………………………. 5
2.2 Drawbacks of ZRP Routing Protocol ……………………………………………………………………………………………………. 5
2.3 Advantages and Disadvantages of Other Robust Routing Protocols ………………………………………………….. 6
2.4 Comparison of ZRP with Other Robust Routing Protocols ………………………………………………………………… 7
2.5 Alternative Solutions to the Challenges of the ZRP Routing Protocol ……………………………………………….. 7
2.6 Conceptual framework model …………………………………………………………………………………………………………….11
2.6.1 Independent Variables ………………………………………………………………………………………………………………………11
2.6.2 Moderating Variables ………………………………………………………………………………………………………………………..12
2.6.3 Dependent Variables ………………………………………………………………………………………………………………………….12
2.7
Research questions ……………………………………………………………………………………………………………………………..15
2.7.1 What are the drawbacks of the Zone Routing Protocol (ZRP) routing protocol?…………………………..15
2.7.2
What are the advantages and disadvantages of other robust routing protocols in mobile ad-hoc
networks?……………………………………………………………………………………………………………………………………………………..15
2.7.3
How does ZRP compare with other robust routing protocols in terms of performance and
reliability?…………………………………………………………………………………………………………………………………………………….16
2.7.4
What alternative solutions can be provided to overcome the challenges of the ZRP routing
protocol? ………………………………………………………………………………………………………………………………………………………16
CHAPTER 3: RESEARCH METHODOLOGY …………………………………………………………………………………17
3.1 Introduction……………………………………………………………………………………………………………………………………………17
3.2 Relationship with Cybersecurity ………………………………………………………………………………………………………….17
3.2.1 Data Preservation and Security ………………………………………………………………………………………………………………………………………. 18
3.2.2 Energy-Efficiency and Security ………………………………………………………………………………………………………………………………………. 18
3.2.3 Secure Communication and Routing ………………………………………………………………………………………………………………………………. 19
3.2.4 Evaluation Parameters with Cybersecurity Focus ……………………………………………………………………………………………………….. 19
3.3 Methodological Explanation………………………………………………………………………………………………………………….19
3.4 Technical Work and Tools …………………………………………………………………………………………………………………….20
3.4.1 NS-3 Characteristics………………………………………………………………………………………………………………………………………………………….. 22
3.5 Response Time Properties as Evaluation Parameters ………………………………………………………………………..22
3.5.1 Incorporation of Response Time Properties …………………………………………………………………………………………………………………. 22
3.5.2 Integration into Simulation Experiments ………………………………………………………………………………………………………………………. 23
3.5.3 Visualization of Response Time Properties ………………………………………………………………………………………………………………….. 23
3.5.4 Inclusion in Evaluation Parameters ……………………………………………………………………………………………………………………………….. 23
3.6 Research Gap ………………………………………………………………………………………………………………………………………..23
3.7 Research Design ……………………………………………………………………………………………………………………………………25
3.8 Data Collection ……………………………………………………………………………………………………………………………………..25
3.9 Data Analysis ………………………………………………………………………………………………………………………………………..26
3.9.1 Testing the Significance of the Study ………………………………………………………………………………………………..26
3.9.2 Ethical Considerations ………………………………………………………………………………………………………………………27
3.9.3 Expected Results ………………………………………………………………………………………………………………………………..28
CHAPTER 4: RESULTS AND COMPARISONS ……………………………………………………………………………..29
4.1 Introduction……………………………………………………………………………………………………………………………………………29
4.2 Challenges ………………………………………………………………………………………………………………………………………………29
4.2.1 Last Node Repair ……………………………………………………………………………………………………………………………………………………………… 29
4.2.2 Network-Wide Repair ……………………………………………………………………………………………………………………………………………………… 30
4.3 Proposed Methodology ………………………………………………………………………………………………………………………………………………………… 30
4.3.1 Route Array Maintenance …………………………………………………………………………………………………………………30
4.3.2 Proactive Repair by Predecessor Node ………………………………………………………………………………………………………………………….. 30
4.3.3 Alternative Path Search …………………………………………………………………………………………………………………….31
4.3.4 Iterative Repair Process …………………………………………………………………………………………………………………….31
4.4 Benefits ………………………………………………………………………………………………………………………………………………….31
4.5 Optimized Data Exchange …………………………………………………………………………………………………………………………………………………… 32
4.5.1 Detailed Scenario ……………………………………………………………………………………………………………………………….33
4.5.2 Scenario ……………………………………………………………………………………………………………………………………………………………………………… 33
4.6.1 Scenario Actions ………………………………………………………………………………………………………………………………………………………………. 36
4.6.1.2 ZRP (inferred from ZRP characteristics) ……………………………………………………………………………………..36
4.6.1.3 Comparison ………………………………………………………………………………………………………………………………………37
4.6.1.4 Differences ………………………………………………………………………………………………………………………………………..37
4.7 Original ZRP Route Maintenance ……………………………………………………………………………………………………….38
4.7.1 Repair Mechanism ……………………………………………………………………………………………………………………………………………………………. 38
4.7.2 Flooding Control ……………………………………………………………………………………………………………………………………………………………… 38
4.7.3 Handling RREQ Messages ……………………………………………………………………………………………………………………………………………… 39
4.7.4 Control Traffic ………………………………………………………………………………………………………………………………………………………………….. 39
4.7.5 Intrazone Routing ……………………………………………………………………………………………………………………………………………………………. 39
4.8 Proposed Methodology (Recap)…………………………………………………………………………………………………………..39
4.8.1 Repair Mechanism ……………………………………………………………………………………………………………………………………………………………. 39
4.8.2 Flooding Control ………………………………………………………………………………………………………………………………………………………………. 40
4.8.3 Handling RREQ Messages ……………………………………………………………………………………………………………………………………………… 40
4.8.4 Control Traffic …………………………………………………………………………………………………………………………………………………………………… 40
4.9 Comparison …………………………………………………………………………………………………………………………………………..41
4.10 ZRP Route Maintenance in a Nutshell ………………………………………………………………………………………………41
4.10.1 Route Repair in ZRP ……………………………………………………………………………………………………………………………………………………… 42
4.10.2 Preventing Network Flooding ………………………………………………………………………………………………………………………………………. 42
4.10.3 Query Forwarding and Termination Strategy …………………………………………………………………………………………………………….. 42
4.11 Comparison with Proposed Methodology………………………………………………………………………………………….42
4.11.1
Scope of Repair…………………………………………………………………………………………………………………………………………………………… 43
4.11.2 Node Responsibility ………………………………………………………………………………………………………………………………………………………. 43
4.11.3 Flooding Control …………………………………………………………………………………………………………………………………………………………….. 43
4.11.4 Termination Strategies …………………………………………………………………………………………………………………………………………………… 43
4.11.5 Localized Repair vs. Network-Wide Repair ………………………………………………………………………………………………………………. 44
4.11.6 Minimizing Downtime and Data Loss ……………………………………………………………………………………………44
4.11.7 Comparison Table ……………………………………………………………………………………………………………………………44
4.12.1 Description of scenario …………………………………………………………………………………………………………………….46
4.13 Total received packets ………………………………………………………………………………………………………………………..47
4.13.1 Description scenario…………………………………………………………………………………………………………………………48
4.14 Comparison of messages exchange …………………………………………………………………………………………………….49
4.14.1 Description ……………………………………………………………………………………………………………………………………….50
4.14.1.1. First Approach: …………………………………………………………………………………………………………………………….50
4.14.1.2 Proposed Approach ………………………………………………………………………………………………………………………51
4.15 Recommendations ……………………………………………………………………………………………………………………………….51
4.16 Practical Applications and Use Cases ……………………………………………………………………………………………….54
4.17 Implementation and Protocol Optimization………………………………………………………………………………………55
4.17.1 Software-Defined Networking (SDN) Integration ………………………………………………………………………….55
4.17.2 Protocol Parameter Tuning………………………………………………………………………………………………………………55
4.17.3 Hardware and Firmware Considerations……………………………………………………………………………………….55
4.17.4 Contributions to MANET Research ………………………………………………………………………………………………..56
4.18 Summary ……………………………………………………………………………………………………………………………………………..57
LIST OF ABBREVIATIONS
AD-HOC: Ad-hoc networks
ANOVA: Analysis of Variance
AODV: Ad-hoc On-demand Distance Vector
AOMDV: Ad-hoc On-demand Multipath Distance Vector Routing
DRL: Deep reinforcement learning
DSDV: Destination-Sequenced Distance Vector
DSR: Dynamic Source Routing
GPT: Generative Pre-trained Transformer
IoT: Internet of Things
MANETs: Mobile Ad-Hoc Networks
MANETs: Mobile Ad-Hoc Networks
MAODV: Mobility-Aware Routing Algorithm
NS-3: Network Simulator 3
OLSR: Optimized Link State Routing
PURPs: Prominent Unicast Routing Protocols
RP- Routing Protocol
RTP- Response Time Properties.
SEAL: Security-Aware List-based Routing Protocol
TORA: Temporally Ordered Routing Algorithm
ZRP: Zone Routing Protocol
LIST OF FIGURES
Figure 1: the conceptual framework model
Figure 2. data flow model in ns-3 simulation at a high-level
Figure 3. NS-3 research work
Figure. 4: diagram of scenario
Figure 5: original ZRP
Figure 6: the first packet received
Figure.7: channel repair completed
Figure.8.: comparison between messages exchange
LIST TABLES
Table 1: Construct an Indicator Table for Research Objectives.
Table 2: Latency in step 4
Table 3: Comparison Table
TABLE OF FIGURES
TABLE 1: CONSTRUCT AN INDICATOR TABLE FOR RESEARCH OBJECTIVES. ……………………………………… XIV
TABLE 2: LATENCY IN STEP 4 …………………………………………………………………………………………………….. XIV
TABLE 3: COMPARISON TABLE ………………………………………………………………………………………………….. XIV
FIGURE 1: THE CONCEPTUAL FRAMEWORK MODEL ……………………………………………………………………. 11
TABLE1: CONSTRUCT AN INDICATOR TABLE FOR RESEARCH OBJECTIVES…. ERROR! BOOKMARK NOT
DEFINED.
FIGURE 2. DATA FLOW MODEL IN NS-3 SIMULATION AT A HIGH-LEVEL. ……………………………………… 20
FIGURE 3. NS-3 RESEARCH WORK ……………………………………………………………………………………………. 21
FIGURE 4: ARCHITECTURE OF NS3 LTE SIMULATION ……………………………………………………………….. 21
TABLE 2: LATENCY IN STEP 4 …………………………………………………………………………………………………… 32
FIG. 5: DIAGRAM OF SCENARIO ………………………………………………………………………………………………… 35
FIGURE.6: ORIGINAL ZRP ……………………………………………………………………………………………………….. 38
FIG 7. RREQ MESSAGE AFTER EXECUTION ……………………………………………………………………………….. 40
TABLE 3: COMPARISON TABLE…………………………………………………………………………………………………. 45
FIGURE.8: FIRST PACKET RECEIVED …………………………………………………………………………………………. 46
FIG.9: CHANNEL REPAIR COMPLETED ……………………………………………………………………………………… 47
FIG 10: FUNCTION THAT SIMULATE THE NETWORK TOPOLOGY USING A DIRECTED GRAPH …………….. 48
FIG 11: MESSAGE RECEIVED AFTER CODE EXECUTED …………………………………………………………………. 48
FIG.12.: COMPARISON BETWEEN MESSAGES EXCHANGE ……………………………………………………………… 50
HYBRID ROUTING WITH ZONE ROUTING PROTOCOL
CHAPTER 1: INTRODUCTION OF HYBRID ROUTING WITH ZONE ROUTING
PROTOCOL
1.1 Introduction
In the wake of technological advancements and the invention of the Internet of Things, IoT
mobile ad-hoc Networks have become a crucial part of the process. A mobile ad hoc network,
abbreviated as MANETs, is a wireless network comprising different terminals that can heal and
reconfigure without needing any specific or fixed infrastructure. These wireless networks are
commonly used in non-invasive data mining by exchanging information packages through a nondefinite topology (Goel et al., 2022). MANETs are of various types, such as Vehicular Ad Hoc
Networks, smartphone ad hoc networks, internet-based MANETS, and flying ad hoc networks. The
basic functionality of MANET relies on its robust routing protocols. These protocols include
proactive routing protocols, reactive routing protocols, and hybrid routing protocols.
Currently, Zone routing protocol (ZRP) is the most common hybrid routing protocol
combining both active and proactive routing protocols. Some of the advantages of ZRP include
reduced congestion through the elimination of hierarchies and reduced control overhead required in
proactive routing protocols. However, ZRP contains a myriad of disadvantages for the base of the
study. Some major disadvantages of high overlapping degrees are temporary routing instability and
overhead routing overload (Yang et al., 2018). Understanding these problems is crucial for
developing improved ZRP routing protocols to overcome the challenges while maintaining the
advantages of ZRP.
1
LITERATURE REVIEW
Additionally, understanding the challenges of ZRP allows technology developers to choose
the best of the many robust routing protocols. Moreover, the study provides some solutions for the
ZRP routing protocol, such as clustering routing, demonstrating how the method helps solve the
challenges mentioned above. As an example of hybrid routing, studying the ZRP routing protocol
enhances the acceptance of the hybrid protocol amidst the proactive and the reactive routing
protocols, which have already established themselves. The study seeks to understand the failures of
hybrid routing protocol using ZRP as the specific example, compared with other routing protocols,
and provide alternative solutions to these challenges.
1.2 Problem Statement
The use of the Internet of Things (IoT) in mobile ad-hoc networks (MANETs) has become
increasingly important in recent years. These wireless networks, consisting of different terminals,
are commonly used for non-invasive data mining and rely on robust routing protocols for their basic
functionality. One such protocol is the Zone Routing Protocol (ZRP), a hybrid protocol combining
active and proactive routing protocols. However, ZRP has several limitations, such as temporary
routing instability and routing overload, which hinder its performance and reliability in wireless
mesh networks. This study aims to investigate the drawbacks of ZRP and propose alternative
solutions to enhance its performance and reliability. The study aims to compare ZRP with other
robust routing protocols through literature review and simulation experiments and provide insights
and recommendations for future research and development. The research results will help
technology developers make informed decisions when selecting the best routing protocol and
increase the acceptance of hybrid routing protocols.
LITERATURE REVIEW
1.3 Research Objectives
The research objectives are to:
a) Analyse the drawbacks of the ZRP routing protocol.
b) Investigate the advantages and disadvantages of other robust routing protocols.
c) Compare ZRP with other robust routing protocols.
d) Provide alternative solutions to the challenges of the ZRP routing protocol.
1.4 Importance of the Research
The research is important as it aims to understand the challenges of the Zone Routing
Protocol (ZRP) and provide alternative solutions to overcome these challenges. This research is
significant as it can help technology developers make informed decisions when selecting the best
robust routing protocol to fit their needs. Moreover, it is also beneficial in increasing the acceptance
of hybrid routing protocols, such as ZRP, amongst proactive and reactive routing protocols which
have already established their dominance.
1.5 Research Hypothesis / Assumptions / Limitations
The research hypothesis is that alternative solutions can be provided to the challenges of the
Zone Routing Protocol (ZRP). The research assumes that ZRP is a suitable hybrid routing protocol
and that alternative solutions can be provided to the challenges it faces. The research is limited to
the examination of the Zone Routing Protocol (ZRP) and does not consider other hybrid routing
protocols.
3
LITERATURE REVIEW
1.6 Theoretical Framework
The conceptual framework for this study is based on the theory of organizational change.
According to this theory, successful organizational change requires a combination of factors,
including leadership, organizational culture, employee engagement, and effective communication.
We will apply this framework to the specific context of digital transformation initiatives in
organizations.
4
LITERATURE REVIEW
CHAPTER 2: LITERATURE REVIEW
2.1 Introductio