Description
Greetings,I need help writing a 2500 word report (SPE style) report on well performance for Purdhoe Oil Field in Alaska with less than 15% plaigarism rate. The case study should review the technologies used in the field such as (but not limited to) the neural networks and ICVs in-addition to comparison to other developed oil fields. minimum of 10 references should be used and it needs to be written in SPE format. Please share with me the outline before starting to write. I have provided 2 good references to understand more about the ICVs and neural networks. In-addition, you can know more about the SPE writing style here https://www.spe.org/en/authors/resources/prepare-p…
Unformatted Attachment Preview
A Comprehensive Approach to the Design of Advanced Well
Completions
Faisal Turki Manee Al-Khelaiwi
A thesis submitted for the degree of Doctor of Philosophy
Institute of Petroleum Engineering
Heriot-Watt University
Edinburgh – Scotland, UK
March, 2013
Volume I
This Thesis is submitted in two volumes
The copyright in this thesis is owned by the author. Any quotation from the thesis or use
of any of the information contained in it must acknowledge this thesis as the source of
the quotation or information.
Abstract
Advanced Well Completions (AWCs) employing Downhole Flow Control (DFC)
technology such as Inflow Control Devices (ICDs), Interval Control Valves (ICVs),
Autonomous Inflow Control Devices (AICDs) and/or Annular Flow Isolations (AFIs)
provide a practical solution to the challenges normally encountered by conventional
wells. Both oilfield operating companies and several researchers have developed
workflows to identify the optimum well location and field development well
configuration. However, all these approaches do not at present consider optimising
advanced well completions employing DFCs.
The objective of this thesis is to provide an automated, comprehensive workflow to
identify the optimum advanced well completion design that ensures an optimum well
performance throughout the well’s and field’s life.
This study starts by describing the history of ICD, AICD, ICV and AFI development
with emphasis on the (near and) fully commercially available types and their areas of
application. The thesis then reviews the flow performance of available ICD, ICV and
AICD types. It reviews the available advanced completion modelling techniques and
their historical development. This allows provision of guidelines on how to model DFC
technologies performance when combined with AFIs over the well’s life. It shows how
the value of such well-construction options can be quantified using these tools.
The thesis introduces a novel workflow outlining the process of designing ICD
completions with or without AFIs for different well architectures applied in different
reservoir types for production or injection purposes. The workflow incorporates: the
ICD restriction sizing; the requirement for AFI, their frequency and distribution; the
impact of ICD reliability throughout the life of the well, the effect of uncertainty on the
design parameters, installation risks and the resulting economic value.
This workflow is then extended to the design and evaluation of AICD completions,
through identification of the optimum control of water and excess gas production.
The value and applicability of the proposed workflow is verified using synthetic and
real field case studies. The latter include three oil fields (H-Field, S-Field and U-Field),
one thin oil column/gas condensate field (NH-Field) and a gas field (C-Field). These
cases also illustrated the value which can be gained from the application of Downhole
Flow Control technologies.
Dedication
I dedicate this thesis to “Allah” followed by my beloved mother (Fatima Marzoq AlKhelaiwi) and father (Turki Manee Al-Khelaiwi) for their prayers, support and
encouragement. I also dedicate this work to my wife (Amal) my son (Albaraa) and my
daughter (Khowla) for their patience.
Acknowledgement
In the Name of Allah, the Most Gracious, the Most Merciful
First and foremost, I would like to acknowledge my study supervisor (Professor David
R. Davies) for his guidance, continuous support and encouragement during the course
of this study.
My gratitude goes to the Management of Saudi Aramco for their financial and moral
support as well as Heriot-Watt University “IW&FsT” JIP members for their valuable
discussions during this study. My special thanks to Odd.Helge-Inderhaug, Roger Nibo,
Sigurd Erlandsen, Peter Griffith, Richard Straub, Line Skarsholt for provision of the
field models. I also would like to thank Mike Konopczynski and A. Ajayi for initiating
the ICD and ICV comparison study.
I would like to express my appreciation to the staff at the Institute of Petroleum
Engineering at Heriot-Watt University including: Alan Brown, Claire MacMillan and
Anne Mothers for their support.
I extend my thanks to the “IW&FsT” team members, Dr. Salem Elmsallati, Dr. Farhad
Ebadi, Dr. Fajhan Al-Mutairi, Dr. George Aggrey, Dr. Vasily Birchenko, Dr. Khafiz
Muradov, Dr. Yang Qing, Yousef Rafiei and Ivan Gerbenkin for the fruitful
discussions.
I also would like to thank Geoquest, AGR, PETEX, Sciencesoft and EPS for provision
of their software.
I would like to appreciate all the support and encouragement that I received from my
family members and friends including: Mashhoor, Tahani, Amani, Afnan, Nada,
Shoroug, Majed, Aunt Liz, Uncle Ali, Uncle Sami, Uncle Saleh, Faisal, Ali, Fawaz,
Naif, Othman and Mohamad.
Finally, most deeply and most patiently, I sincerely thank my mother (Fatima), father
(Turki), wife (Amal) and children (Albaraa and Khowla) for their prayers, moral
support and patience.
ACADEMIC REGISTRY
Research Thesis Submission
Name:
FAISAL TURKI MANEE AL-KHELAIWI
School/PGI:
INSTITUTE OF PETROLEUM ENGINEERING
Version: (i.e. First,
Resubmission, Final)
FINAL
Degree Sought
(Award and
Subject area)
PHD IN PETROLEUM ENGINEERING
Declaration
In accordance with the appropriate regulations I hereby submit my thesis and I declare that:
1)
2)
3)
4)
5)
*
the thesis embodies the results of my own work and has been composed by myself
where appropriate, I have made acknowledgement of the work of others and have made reference to
work carried out in collaboration with other persons
the thesis is the correct version of the thesis for submission and is the same version as any electronic
versions submitted*.
my thesis for the award referred to, deposited in the Heriot-Watt University Library, should be made
available for loan or photocopying and be available via the Institutional Repository, subject to such
conditions as the Librarian may require
I understand that as a student of the University I am required to abide by the Regulations of the
University and to conform to its discipline.
Please note that it is the responsibility of the candidate to ensure that the correct version of the thesis
is submitted.
Signature of
Candidate:
Date:
Submission
Submitted By (name in capitals):
Signature of Individual Submitting:
Date Submitted:
For Completion in the Student Service Centre (SSC)
Received in the SSC by (name in
capitals):
Method of Submission
(Handed in to SSC; posted through
internal/external mail):
E-thesis Submitted (mandatory for
final theses)
Signature:
Please note this form should bound into the submitted thesis.
Updated February 2008, November 2008, February 2009, January 2011
Date:
Table of Contents
Chapter 1
Introduction and Motivation ………………………………………………………………. 1
1.1 Thesis Objective ………………………………………………………………………………………. 4
1.2 Thesis Layout ………………………………………………………………………………………….. 5
Chapter 2
Introduction to Advanced Well Completions ……………………………………….. 7
2.1 Introduction …………………………………………………………………………………………….. 7
2.2 Advanced Well Completion Components ………………………………………………….. 10
2.3 Historical Development of Downhole Flow Control Devices (ICDs) ……………. 10
2.4 Passive Flow Control: Inflow Control Devices (ICDs)………………………………… 12
2.5 ICD Types …………………………………………………………………………………………….. 12
2.5.1
Labyrinth Channel-type ICD ……………………………………………………………. 13
2.5.2
Helical Channel-type ICD (Production EQUALIZERTM) ……………………… 14
2.5.3
Slot-type ICD (Hybrid EQUALIZERTM)……………………………………………… 15
2.5.4
Tube-type ICD (EQUIFLOWTM) ……………………………………………………….. 17
2.5.5
Nozzle-type ICD
(ResFlowTM,
ResInjectTM, FloMatik-SubTM
and
FloRightTM) …………………………………………………………………………………… 18
2.5.6
Orifice-type ICD (FloRegTM and FluxRiteTM) ……………………………………… 19
2.6 Comparison of ICD Types ………………………………………………………………………. 20
2.7 Published ICD Applications …………………………………………………………………….. 23
2.7.1
ICD with SAS in Horizontal Wells …………………………………………………….. 23
2.7.2
ICD with Debris Filter in Horizontal Wells ………………………………………… 24
2.7.3
Integration with Annular Flow Isolation ……………………………………………. 24
2.7.4
Integration with Artificial Lift …………………………………………………………… 26
2.7.5
Integration with Gravel Pack ……………………………………………………………. 27
2.7.6
Integration with Multilateral and Intelligent Completion …………………….. 27
2.7.7
Water Injection Wells ………………………………………………………………………. 29
2.7.8
Summary of ICD Applications ………………………………………………………….. 30
2.8 Potential ICD Applications ……………………………………………………………………… 31
2.8.1
Gas Production and Water-Alternating-Gas (WAG) Injection Wells ……… 31
2.8.1
Gas Fields ……………………………………………………………………………………… 32
2.9 Reactive Flow Control: Autonomous Inflow Control Devices (AICDs) ………… 33
2.10 AICD Types ………………………………………………………………………………………….. 33
2.10.1 Flapper-type AICD………………………………………………………………………….. 33
2.10.2 Ball-type AICD (Oil SelectorTM) ……………………………………………………….. 35
2.10.3 Swellable-type AICD ……………………………………………………………………….. 36
2.10.4 Disc-type AICD ………………………………………………………………………………. 37
2.10.5 Remote-type AICD ………………………………………………………………………….. 38
2.11 Comparison of AICD Types ……………………………………………………………………. 39
2.12 Potential Applications of AICD ……………………………………………………………….. 40
2.12.1 Layered Reservoirs (Compartmentalized Reservoirs) ………………………….. 40
2.12.2 Fractured Reservoirs ………………………………………………………………………. 41
2.12.3 Reservoirs with Varying Oil-Water-Contacts ……………………………………… 41
2.12.4 Thin-Oil-Column Reservoirs …………………………………………………………….. 42
2.12.5 Coning Situations ……………………………………………………………………………. 42
2.12.6 Heterogeneous Reservoirs (Heterogeneous Layers)…………………………….. 42
2.13 Active Flow Control: Interval Control Valves (ICVs) …………………………………. 43
2.14 ICV Types …………………………………………………………………………………………….. 44
2.14.1 Discrete-positions ICV (DP-ICV) ……………………………………………………… 44
2.14.2 Variable-positions ICV (VP-ICV) ……………………………………………………… 44
2.14.3 Control Line-free ICVs (CLF-ICV) ……………………………………………………. 45
2.14.4 Autonomous-ICV (AICV) …………………………………………………………………. 45
2.15 Comparison of ICV Types ………………………………………………………………………. 46
2.16 ICV Applications……………………………………………………………………………………. 47
2.17 Annular Flow Isolation (AFI) ………………………………………………………………….. 51
2.18 Causes of Annular Flow ………………………………………………………………………….. 51
2.18.1 Annular Flow Impact ………………………………………………………………………. 51
2.19 AFI Types ……………………………………………………………………………………………… 52
2.19.1 Mechanically and Hydraulically Set External Casing Packers ……………… 52
2.19.2 Inflatable Packers …………………………………………………………………………… 53
2.19.3 Expandable Packers ………………………………………………………………………… 53
2.19.4 Chemical Packers……………………………………………………………………………. 54
2.19.5 Swell Packers and Constrictors ………………………………………………………… 54
2.19.6 Gravel Packs and Collapsed Sands in Annulus …………………………………… 57
2.20 Comparison of AFI Types ……………………………………………………………………….. 58
2.21 Comparison of Downhole Flow Control Technologies ……………………………….. 58
2.21.1 Modelling-Tool Availability ……………………………………………………………… 63
2.21.2 Long-Term Equipment Reliability ……………………………………………………… 64
2.21.3 Reservoir-Isolation Barrier ………………………………………………………………. 67
2.21.4 Improved Cleanup …………………………………………………………………………… 67
2.21.5 Selective Matrix Treatment ………………………………………………………………. 69
2.21.6 Equipment Cost ………………………………………………………………………………. 70
2.21.7 Installation Risks …………………………………………………………………………….. 71
2.21.8 In-situ Gas Lift ……………………………………………………………………………….. 73
2.21.9 Gas Fields ……………………………………………………………………………………… 73
2.22 Summary ………………………………………………………………………………………………. 76
Chapter 3
Advanced Well Completion Performance and Modelling …………………….. 77
3.1 Introduction …………………………………………………………………………………………… 77
3.2 Fluid Flow Path ……………………………………………………………………………………… 77
3.3 Advanced Well Completion Modelling Stages …………………………………………… 79
3.3.1
Sizing Stage ……………………………………………………………………………………. 79
3.3.2
Evaluation Stage …………………………………………………………………………….. 81
3.4 Available Models for the Sizing Stage and Their Limitations ………………………. 81
3.4.1
Available ICD Completions Modelling Techniques and Their Limitations 81
3.4.2
Available AICD Completion Modelling Techniques …………………………….. 82
3.4.3
Available ICV Completion Modelling Techniques and Their Limitations .. 82
3.4.4
Proposed Modelling Technique ………………………………………………………… 84
3.5 Inflow Performance of Wells …………………………………………………………………… 84
3.5.1
Vertical and Deviated Wells……………………………………………………………… 85
3.5.2
Horizontal and Multilateral Wells …………………………………………………….. 86
3.5.3
Gas Wells ………………………………………………………………………………………. 89
3.6 Flow Performance and Modelling of ICDs ………………………………………………… 91
3.6.1
Helical Channel-type ICD………………………………………………………………… 93
3.6.2
Nozzle and Orifice-type ICDs …………………………………………………………. 100
3.6.3
Labyrinth Channel and Flow Tube-type ICD ……………………………………. 102
3.6.4
Slot-type ICD………………………………………………………………………………… 103
3.6.5
ICD Modelling Simplification and Similarities …………………………………. 106
3.6.1
Regulated-type ICD……………………………………………………………………….. 111
3.7 Flow Performance and Modelling of AICDs ……………………………………………. 112
3.7.1
Flapper, Ball, Disc and Remote-type AICD………………………………………. 112
3.7.2
Swellable-type AICD ……………………………………………………………………… 114
3.8 Flow Performance of ICVs ……………………………………………………………………. 116
3.9 Modelling of Screens, Pre-packed Screens and Gravel Packs …………………….. 118
3.10 Modelling of Fluid Flow in the Wellbore, Completion and Tubing …………….. 118
3.11 Wellbore and Completion Productivity Prediction with the “Trunk-andbranch” Modelling Approach Process ……………………………………………………… 119
3.11.1 Modelling Process for Influx Content and Misbalance Identification …… 119
3.11.2 Modelling Process for the (A)ICD Restriction Sizing …………………………. 121
3.11.3 Modelling Process of ICV and Multilateral Well Completions ……………. 124
3.12 The “Network” Approach Modelling Process ………………………………………….. 127
3.12.1 Wellbore Modelling Technique (NEToolTM) ……………………………………… 127
3.12.2 Subsurface/Surface Network Modelling Software(s) ………………………….. 128
3.12.3 Modelling All (A)ICD and ICV Types ………………………………………………. 129
3.13 Modelling for the Evaluation Stage ………………………………………………………… 130
3.14 Available Modelling Techniques for the Evaluation Stage…………………………. 131
3.14.1 SINDA/FLUINT ……………………………………………………………………………. 131
3.14.2 EclipseTM Reservoir Simulator ………………………………………………………… 131
3.14.3 RevealTM 7.0 Reservoir Simulator ……………………………………………………. 133
3.14.4 VIP-NEXUSTM Reservoir Simulator …………………………………………………. 133
3.14.5 STARSTM Reservoir Simulator…………………………………………………………. 134
3.15 Integrated Reservoir and Wellbore Simulation for AWC Performance
Evaluation……………………………………………………………………………………………. 134
3.15.1 Advantages of Integrated Production Modelling ……………………………….. 136
3.15.2 Reservoir/Subsurface/Surface Coupling Methodology ……………………….. 137
3.16 Validation of Modelling Techniques ……………………………………………………….. 140
3.16.1 Validation of Well Productivity Modelling ……………………………………….. 140
3.16.2 Validation of Downhole Flow Control Devices Modelling …………………. 143
3.17 Summary …………………………………………………………………………………………….. 147
Chapter 4
Designing Inflow Control Device Completions and Annular Flow
Isolation ……………………………………………………………………………………… 149
4.1 Introduction …………………………………………………………………………………………. 149
4.2 Brief Review of ICD Technology …………………………………………………………… 150
4.3 ICD Completions Design Workflow ……………………………………………………….. 151
4.4 Identification of Optimum ICD Restriction Size ………………………………………. 151
4.4.1
Basic Concepts:…………………………………………………………………………….. 153
4.4.2
ICD across High Productivity Zone(s) and SAS (or PPL) across Low
Productivity Zone: ……………………………………………………………………….. 156
4.4.3
Constant ICD Restriction Size across Producing Zones: ……………………. 161
4.4.4
Variable ICD Restriction Size across Producing Zones:…………………….. 165
4.4.5
ICD across the Producing Zone and Blank Pipe across Shale, Fractures
or Super-K Layers: ………………………………………………………………………. 168
4.5 ICD Completion Designs for Different Well Architecture: ………………………… 170
4.5.1
Vertical and Deviated Wells……………………………………………………………. 170
4.5.2
Horizontal Wells …………………………………………………………………………… 170
4.5.3
Multilateral Wells …………………………………………………………………………. 176
4.6 Minimum ICD Restriction Size Limit ……………………………………………………… 180
4.6.1
Erosion Velocity ……………………………………………………………………………. 181
4.6.2
ICD Plugging ……………………………………………………………………………….. 184
4.6.3
ICD Emulsion Creation …………………………………………………………………. 184
4.6.4
Appropriate ICD Type Identification ……………………………………………….. 185
4.7 Annular flow ……………………………………………………………………………………….. 186
4.7.1
AFI Frequency Identification ………………………………………………………….. 187
4.7.2
AFI type identification……………………………………………………………………. 191
4.8 Accounting for Uncertainties …………………………………………………………………. 193
4.9 Economic Value …………………………………………………………………………………… 194
4.10 Summary …………………………………………………………………………………………….. 196
Chapter 5
Autonomous Inflow Control Device Completion Design ……………………. 198
5.1 Introduction …………………………………………………………………………………………. 198
5.2 AICD Completion Design Workflow ……………………………………………………… 199
5.3 Identification of Optimum Initial AICD Restriction Size …………………………… 199
5.4 Optimum Reactive AICD Restriction Identification ………………………………….. 199
5.4.1
Basic Concepts:…………………………………………………………………………….. 199
5.4.2
Reactive AICD restriction sizing: ……………………………………………………. 201
5.5 Summary …………………………………………………………………………………………….. 205
Chapter 6
Case Studies …………………………………………………………………………………. 206
6.1 Introduction …………………………………………………………………………………………. 206
6.2 Channelised Reservoir (Synthetic) Case Study …………………………………………. 206
6.2.1
Introduction ………………………………………………………………………………….. 206
6.2.2
ICD Completion Design …………………………………………………………………. 207
6.2.3
Modelling-Tool Availability and the Need for AFI …………………………….. 209
6.2.4
Equipment Reliability …………………………………………………………………….. 209
6.2.5
Improved Cleanup …………………………………………………………………………. 212
6.2.6
Equipment Cost …………………………………………………………………………….. 215
6.2.7
Gas lift …………………………………………………………………………………………. 216
6.2.1
Summary………………………………………………………………………………………. 218
6.3 The S-Field Case Study …………………………………………………………………………. 219
6.3.1
Introduction ………………………………………………………………………………….. 219
6.3.2
The S-Field Challenges and Study Objective …………………………………….. 219
6.3.3
ICD Completion ……………………………………………………………………………. 222
6.4 The H-Field Heavy Oil Case Study…………………………………………………………. 226
6.4.1
Introduction ………………………………………………………………………………….. 226
6.4.2
Geological and Fluid Description …………………………………………………… 226
6.4.3
Field Development Plan…………………………………………………………………. 228
6.4.4
Challenges and Study Objectives …………………………………………………….. 229
6.4.5
Reservoir Model Description ………………………………………………………….. 231
6.4.6
Communication between the Laterals ………………………………………………. 235
6.4.7
Lateral Placement Optimisation ……………………………………………………… 237
6.4.8
Inflow Control Devices (ICDs) Design …………………………………………….. 241
6.4.9
Autonomous Inflow Control Devices (AICDs) design ………………………… 252
Ball Type AICD Application……………………………………………………………………….. 253
Flapper Type AICD Application …………………………………………………………………. 256
6.4.10 Comparison of Advanced Inflow Control Systems ……………………………… 257
6.5 C-Gas Field Case Study ………………………………………………………………………… 259
6.5.1
Introduction ………………………………………………………………………………….. 259
6.5.2
Conventional Completion Performance……………………………………………. 260
6.5.3
ICD Completion Performance ………………………………………………………… 262
6.5.4
ICV Completion Performance …………………………………………………………. 264
6.5.5
AICD Completion Performance ………………………………………………………. 264
6.6 NH-Gas Condensate Field Case Study…………………………………………………….. 265
6.6.1
Introduction ………………………………………………………………………………….. 265
6.6.2
Reservoir Model Description ………………………………………………………….. 265
6.6.3
Challenges and Study Objectives …………………………………………………….. 266
6.6.4
Conventional Completion ………………………………………………………………. 267
6.6.5
ICD Completion ……………………………………………………………………………. 268
6.6.6
ICV Completion…………………………………………………………………………….. 269
6.6.7
AICD Completion ………………………………………………………………………….. 269
6.7 U-Field Case Study ………………………………………………………………………………. 271
6.7.1
Introduction ………………………………………………………………………………….. 271
6.7.2
ICD Completion Application ………………………………………………………….. 272
6.8 Synopsis of Publications ……………………………………………………………………….. 274
6.8.1
Successful Application of a Robust Link to Automatically Optimise
Reservoir Management of a Real Field [202] ………………………………….. 274
6.8.2
Inflow Control Devices: Application and Value Quantification of a
Developing Technology [220] ……………………………………………………….. 275
6.8.3
Advanced Wells: A Comprehensive Approach to the Selection between
Passive and Active Inflow Control Completions [242] ……………………… 276
6.8.4
Advanced Well Flow Control Technologies Can Improve Well Cleanup
[243] ………………………………………………………………………………………….. 277
6.8.5
Advanced Sand-Face Completion Design and Application in Gas and
Gas-Condensate Fields [244] ………………………………………………………… 278
6.9 Summary …………………………………………………………………………………………….. 279
Chapter 7
Conclusions and Recommendations ………………………………………………… 280
7.1 Conclusions …………………………………………………………………………………………. 280
7.2 Recommendations ………………………………………………………………………………… 288
Appendix A. 3-1 ……………………………………………………………………………………………… 289
Appendix A. 6-1 ……………………………………………………………………………………………… 294
Appendix A. 6-2 ……………………………………………………………………………………………… 300
Appendix A. 6-3 ……………………………………………………………………………………………… 314
References
………………………………………………………………………………………………….. 333
Lists of Tables
Table 2-1:
Comparison of commercially available ICD types ……………………………… 22
Table 2-2:
Stair step ICD configuration of Troll Well M-22 ……………………………….. 23
Table 2-3:
Summary of Published ICD Applications …………………………………………. 30
Table 2-4:
Comparison of available AICD types ……………………………………………….. 39
Table 2-5:
Comparison of available ICV types based on positions and actuation
systems …………………………………………………………………………………………. 46
Table 2-6:
Summary of Published ICV Applications …………………………………………. 49
Table 2-7:
Comparison of available AFIs …………………………………………………………. 58
Table 2-8:
Conventional cased hole, ICD, ICV and AICD completions compared … 60
Table 3-1:
Cf values ……………………………………………………………………………………….. 96
Table 3-2:
Calculated ICD strength values ……………………………………………………….. 97
Table 3-3:
Cu values [170]…………………………………………………………………………….. 101
Table 3-4:
Comparison of the results of four friction factor estimation models ……. 103
Table 3-5:
Calculated 10-orifice-type ICD strength values ……………………………….. 107
Table 3-6:
Calculated nozzle-type ICD strength values …………………………………….. 108
Table 3-7:
Calculated 10-orifice-type ICD C(Re) values …………………………………….. 111
Table 3-8:
Coupled equations of flow through the reservoir and (A)ICD types ……. 123
Table 3-9:
AWC components and modelling keywords ….